WARNING! Access to this system is limited to authorised users only.
Unauthorised users may be subject to prosecution.
Unauthorised access to this system is a criminal offence under Australian law (Federal Crimes Act 1914 Part VIA)
It is a criminal offence to:
(1) Obtain access to data without authority. -Penalty 2 years imprisonment.
(2) Damage, delete, alter or insert data without authority. -Penalty 10 years imprisonment.
User activity is monitored and recorded. Anyone using this system expressly consents to such monitoring and recording.

To protect your data, the CISO officer has suggested users to enable 2FA as soon as possible.
Currently 2.7% of users enabled 2FA.

mod.rs 52.7 KB
Newer Older
1
2
#![allow(non_upper_case_globals)]

3
// TODO: Move architecture independent codes in here, inst_sel and asm_backend to somewhere else...
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
pub mod inst_sel;

mod codegen;
pub use compiler::backend::aarch64::codegen::CodeGenerator;

mod asm_backend;
pub use compiler::backend::aarch64::asm_backend::ASMCodeGen;
pub use compiler::backend::aarch64::asm_backend::emit_code;
pub use compiler::backend::aarch64::asm_backend::emit_context;
pub use compiler::backend::aarch64::asm_backend::emit_context_with_reloc;
#[cfg(feature = "aot")]
pub use compiler::backend::aarch64::asm_backend::spill_rewrite;

use ast::ptr::P;
use ast::ir::*;
use ast::types::*;
use ast::op;
use compiler::backend::RegGroup;
use vm::VM;

use utils::LinkedHashMap;
use std::collections::HashMap;

macro_rules! REGISTER {
    ($id:expr, $name: expr, $ty: ident) => {
        {
            P(Value {
                hdr: MuEntityHeader::named($id, $name.to_string()),
                ty: $ty.clone(),
                v: Value_::SSAVar($id)
            })
        }
    };
}

macro_rules! GPR_ALIAS {
    ($alias: ident: ($id64: expr, $r64: ident) -> $r32: ident) => {
        lazy_static!{
            pub static ref $r64 : P<Value> = REGISTER!($id64,    stringify!($r64), UINT64_TYPE);
            pub static ref $r32 : P<Value> = REGISTER!($id64 +1, stringify!($r32), UINT32_TYPE);
            pub static ref $alias : [P<Value>; 2] = [$r64.clone(), $r32.clone()];
        }
    };
}

// Used to create a generic alias name
macro_rules! ALIAS {
    ($src: ident -> $dest: ident) => {
        //pub use $src as $dest;
        lazy_static!{
            pub static ref $dest : P<Value> = $src.clone();
        }
    };
}


macro_rules! FPR_ALIAS {
    ($alias: ident: ($id64: expr, $r64: ident) -> $r32: ident) => {
        lazy_static!{
            pub static ref $r64 : P<Value> = REGISTER!($id64,    stringify!($r64), DOUBLE_TYPE);
            pub static ref $r32 : P<Value> = REGISTER!($id64 +1, stringify!($r32), FLOAT_TYPE);
            pub static ref $alias : [P<Value>; 2] = [$r64.clone(), $r32.clone()];
        }
    };
}

GPR_ALIAS!(X0_ALIAS: (0, X0)  -> W0);
GPR_ALIAS!(X1_ALIAS: (2, X1)  -> W1);
GPR_ALIAS!(X2_ALIAS: (4, X2)  -> W2);
GPR_ALIAS!(X3_ALIAS: (6, X3)  -> W3);
GPR_ALIAS!(X4_ALIAS: (8, X4)  -> W4);
GPR_ALIAS!(X5_ALIAS: (10, X5)  -> W5);
GPR_ALIAS!(X6_ALIAS: (12, X6)  -> W6);
GPR_ALIAS!(X7_ALIAS: (14, X7)  -> W7);
GPR_ALIAS!(X8_ALIAS: (16, X8)  -> W8);
GPR_ALIAS!(X9_ALIAS: (18, X9)  -> W9);
GPR_ALIAS!(X10_ALIAS: (20, X10)  -> W10);
GPR_ALIAS!(X11_ALIAS: (22, X11)  -> W11);
GPR_ALIAS!(X12_ALIAS: (24, X12)  -> W12);
GPR_ALIAS!(X13_ALIAS: (26, X13)  -> W13);
GPR_ALIAS!(X14_ALIAS: (28, X14)  -> W14);
GPR_ALIAS!(X15_ALIAS: (30, X15)  -> W15);
GPR_ALIAS!(X16_ALIAS: (32, X16)  -> W16);
GPR_ALIAS!(X17_ALIAS: (34, X17)  -> W17);
GPR_ALIAS!(X18_ALIAS: (36, X18)  -> W18);
GPR_ALIAS!(X19_ALIAS: (38, X19)  -> W19);
GPR_ALIAS!(X20_ALIAS: (40, X20)  -> W20);
GPR_ALIAS!(X21_ALIAS: (42, X21)  -> W21);
GPR_ALIAS!(X22_ALIAS: (44, X22)  -> W22);
GPR_ALIAS!(X23_ALIAS: (46, X23)  -> W23);
GPR_ALIAS!(X24_ALIAS: (48, X24)  -> W24);
GPR_ALIAS!(X25_ALIAS: (50, X25)  -> W25);
GPR_ALIAS!(X26_ALIAS: (52, X26)  -> W26);
GPR_ALIAS!(X27_ALIAS: (54, X27)  -> W27);
GPR_ALIAS!(X28_ALIAS: (56, X28)  -> W28);
GPR_ALIAS!(X29_ALIAS: (58, X29)  -> W29);
GPR_ALIAS!(X30_ALIAS: (60, X30)  -> W30);
GPR_ALIAS!(SP_ALIAS: (62, SP)  -> WSP); // Special register (only some instructions can reference it)
GPR_ALIAS!(XZR_ALIAS: (64, XZR)  -> WZR); // Pseudo register, not to be used by register allocator

// Aliases
ALIAS!(X8 -> XR); // Indirect result location register (points to a location in memory to write return values to)
ALIAS!(X16 -> IP0); // Intra proecdure call register 0 (may be modified by the linker when executing BL/BLR instructions)
ALIAS!(X17 -> IP1);// Intra proecdure call register 1 (may be modified by the linker when executing BL/BLR instructions)
108
ALIAS!(X18 -> PR); // Platform Register (NEVER TOUCH THIS REGISTER (Unless you can proove Linux dosn't use it))
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
ALIAS!(X29 -> FP); // Frame Pointer (can be used as a normal register when not calling or returning)
ALIAS!(X30 -> LR); // Link Register (not supposed to be used for any other purpose)


lazy_static! {
    pub static ref GPR_ALIAS_TABLE : LinkedHashMap<MuID, Vec<P<Value>>> = {
        let mut ret = LinkedHashMap::new();

        ret.insert(X0.id(), X0_ALIAS.to_vec());
        ret.insert(X1.id(), X1_ALIAS.to_vec());
        ret.insert(X2.id(), X2_ALIAS.to_vec());
        ret.insert(X3.id(), X3_ALIAS.to_vec());
        ret.insert(X4.id(), X4_ALIAS.to_vec());
        ret.insert(X5.id(), X5_ALIAS.to_vec());
        ret.insert(X6.id(), X6_ALIAS.to_vec());
        ret.insert(X7.id(), X7_ALIAS.to_vec());
        ret.insert(X8.id(), X8_ALIAS.to_vec());
        ret.insert(X9.id(), X9_ALIAS.to_vec());
        ret.insert(X10.id(), X10_ALIAS.to_vec());
        ret.insert(X11.id(), X11_ALIAS.to_vec());
        ret.insert(X12.id(), X12_ALIAS.to_vec());
        ret.insert(X13.id(), X13_ALIAS.to_vec());
        ret.insert(X14.id(), X14_ALIAS.to_vec());
        ret.insert(X15.id(), X15_ALIAS.to_vec());
        ret.insert(X16.id(), X16_ALIAS.to_vec());
        ret.insert(X17.id(), X17_ALIAS.to_vec());
        ret.insert(X18.id(), X18_ALIAS.to_vec());
        ret.insert(X19.id(), X19_ALIAS.to_vec());
        ret.insert(X20.id(), X20_ALIAS.to_vec());
        ret.insert(X21.id(), X21_ALIAS.to_vec());
        ret.insert(X22.id(), X22_ALIAS.to_vec());
        ret.insert(X23.id(), X23_ALIAS.to_vec());
        ret.insert(X24.id(), X24_ALIAS.to_vec());
        ret.insert(X25.id(), X25_ALIAS.to_vec());
        ret.insert(X26.id(), X26_ALIAS.to_vec());
        ret.insert(X27.id(), X27_ALIAS.to_vec());
        ret.insert(X28.id(), X28_ALIAS.to_vec());
        ret.insert(X29.id(), X29_ALIAS.to_vec());
        ret.insert(X30.id(), X30_ALIAS.to_vec());
        ret.insert(SP.id(), SP_ALIAS.to_vec());
        ret.insert(XZR.id(), XZR_ALIAS.to_vec());
        ret
    };

    // e.g. given eax, return rax
    pub static ref GPR_ALIAS_LOOKUP : HashMap<MuID, P<Value>> = {
        let mut ret = HashMap::new();

        for vec in GPR_ALIAS_TABLE.values() {
            let colorable = vec[0].clone();

            for gpr in vec {
                ret.insert(gpr.id(), colorable.clone());
            }
        }

        ret
    };
}

// Is val a hard coded machine register (not a pseudo register)
pub fn is_machine_reg(val: &P<Value>) -> bool {
    match val.v {
        Value_::SSAVar(ref id) => {
            if *id < FPR_ID_START {
                match GPR_ALIAS_LOOKUP.get(&id) {
                    Some(_) => true,
                    None => false
                }
            } else {
                match FPR_ALIAS_LOOKUP.get(&id) {
                    Some(_) => true,
                    None => false
                }
            }
        }
        _ => false
    }

}


// Returns a P<Value> to the register id
pub fn get_register_from_id(id: MuID) -> P<Value> {
    if id < FPR_ID_START {
        match GPR_ALIAS_LOOKUP.get(&id) {
            Some(val) => val.clone(),
            None => panic!("cannot find GPR {}", id)
        }
    } else {
        match FPR_ALIAS_LOOKUP.get(&id) {
            Some(val) => val.clone(),
            None => panic!("cannot find FPR {}", id)
        }
    }
}

pub fn get_alias_for_length(id: MuID, length: usize) -> P<Value> {
    if id < FPR_ID_START {
        let vec = match GPR_ALIAS_TABLE.get(&id) {
            Some(vec) => vec,
            None => panic!("didnt find {} as GPR", id)
        };

        match length {
            64 => vec[0].clone(),
            _ if length <= 32 => vec[1].clone(),
            _ => panic!("unexpected length {} for {}", length, vec[0])
        }
    } else {
        let vec = match FPR_ALIAS_TABLE.get(&id) {
            Some(vec) => vec,
            None => panic!("didnt find {} as FPR", id)
        };

        match length {
            64 => vec[0].clone(),
            32 => vec[1].clone(),
            _ => panic!("unexpected length {} for {}", length, vec[0])
        }
    }
}

pub fn is_aliased(id1: MuID, id2: MuID) -> bool {
    return get_color_for_precolored(id1) == get_color_for_precolored(id2);
}

pub fn get_color_for_precolored(id: MuID) -> MuID {
    debug_assert!(id < MACHINE_ID_END);

    if id < FPR_ID_START {
        match GPR_ALIAS_LOOKUP.get(&id) {
            Some(val) => val.id(),
            None => panic!("cannot find GPR {}", id)
        }
    } else {
        match FPR_ALIAS_LOOKUP.get(&id) {
            Some(val) => val.id(),
            None => panic!("cannot find FPR {}", id)
        }
    }
}

#[inline(always)]
pub fn check_op_len(ty: &P<MuType>) -> usize {
    match ty.get_int_length() {
        Some(64) => 64,
        Some(32) => 32,
        Some(n) if n < 32 => 32,
        Some(n) => panic!("unimplemented int size: {}", n),
        None => {
            match ty.v {
                MuType_::Float => 32,
                MuType_::Double => 64,
                _ => panic!("unimplemented primitive type: {}", ty)
            }
        }
    }
}

#[inline(always)]
pub fn get_bit_size(ty : &P<MuType>, vm: &VM) -> usize
{
    match ty.get_int_length() {
        Some(val) => val,
        None => {
            match ty.v {
                MuType_::Float => 32,
                MuType_::Double => 64,
                MuType_::Vector(ref t, n) => get_bit_size(t, vm)*n,
                MuType_::Array(ref t, n) => get_bit_size(t, vm)*n,
                MuType_::Void => 0,
                _ => vm.get_type_size(ty.id())*8,
            }
        }
    }
}

#[inline(always)]
pub fn primitive_byte_size(ty : &P<MuType>) -> usize
{
    match ty.get_int_length() {
        Some(val) => round_up(val, 8)/8,
        None => {
            match ty.v {
                MuType_::Float => 4,
                MuType_::Double => 8,
                MuType_::Void => 0,
                _ => panic!("Not a primitive type")
            }
        }
    }
}

lazy_static! {
qinsoon's avatar
qinsoon committed
304
305
    // Note: these are the same as the ARGUMENT_GPRS
    pub static ref RETURN_GPRS : [P<Value>; 8] = [
306
307
308
309
310
311
312
313
314
315
        X0.clone(),
        X1.clone(),
        X2.clone(),
        X3.clone(),
        X4.clone(),
        X5.clone(),
        X6.clone(),
        X7.clone()
    ];

qinsoon's avatar
qinsoon committed
316
    pub static ref ARGUMENT_GPRS : [P<Value>; 8] = [
317
318
319
320
321
322
323
324
325
326
        X0.clone(),
        X1.clone(),
        X2.clone(),
        X3.clone(),
        X4.clone(),
        X5.clone(),
        X6.clone(),
        X7.clone()
    ];

qinsoon's avatar
qinsoon committed
327
    pub static ref CALLEE_SAVED_GPRS : [P<Value>; 10] = [
328
329
330
331
332
333
334
335
336
337
338
        X19.clone(),
        X20.clone(),
        X21.clone(),
        X22.clone(),
        X23.clone(),
        X24.clone(),
        X25.clone(),
        X26.clone(),
        X27.clone(),
        X28.clone(),

339
        // Note: These two are technically CALLEE saved but need to be dealt with specially
340
341
342
343
        //X29.clone(), // Frame Pointer
        //X30.clone() // Link Register
    ];

qinsoon's avatar
qinsoon committed
344
    pub static ref CALLER_SAVED_GPRS : [P<Value>; 18] = [
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        X0.clone(),
        X1.clone(),
        X2.clone(),
        X3.clone(),
        X4.clone(),
        X5.clone(),
        X6.clone(),
        X7.clone(),
        X8.clone(),
        X9.clone(),
        X10.clone(),
        X11.clone(),
        X12.clone(),
        X13.clone(),
        X14.clone(),
        X15.clone(),
        X16.clone(),
        X17.clone(),
        //X18.clone(), // Platform Register
    ];

qinsoon's avatar
qinsoon committed
366
    static ref ALL_GPRS : [P<Value>; 30] = [
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        X0.clone(),
        X1.clone(),
        X2.clone(),
        X3.clone(),
        X4.clone(),
        X5.clone(),
        X6.clone(),
        X7.clone(),
        X8.clone(),
        X9.clone(),
        X10.clone(),
        X11.clone(),
        X12.clone(),
        X13.clone(),
        X14.clone(),
        X15.clone(),
        X16.clone(),
        X17.clone(),
        //X18.clone(), // Platform Register
        X19.clone(),
        X20.clone(),
        X21.clone(),
        X22.clone(),
        X23.clone(),
        X24.clone(),
        X25.clone(),
        X26.clone(),
        X27.clone(),
        X28.clone(),
        X29.clone(), // Frame Pointer
        X30.clone() // Link Register
    ];
}

pub const FPR_ID_START : usize = 100;

FPR_ALIAS!(D0_ALIAS: (FPR_ID_START + 0, D0)  -> S0);
FPR_ALIAS!(D1_ALIAS: (FPR_ID_START + 2, D1)  -> S1);
FPR_ALIAS!(D2_ALIAS: (FPR_ID_START + 4, D2)  -> S2);
FPR_ALIAS!(D3_ALIAS: (FPR_ID_START + 6, D3)  -> S3);
FPR_ALIAS!(D4_ALIAS: (FPR_ID_START + 8, D4)  -> S4);
FPR_ALIAS!(D5_ALIAS: (FPR_ID_START + 10, D5)  -> S5);
FPR_ALIAS!(D6_ALIAS: (FPR_ID_START + 12, D6)  -> S6);
FPR_ALIAS!(D7_ALIAS: (FPR_ID_START + 14, D7)  -> S7);
FPR_ALIAS!(D8_ALIAS: (FPR_ID_START + 16, D8)  -> S8);
FPR_ALIAS!(D9_ALIAS: (FPR_ID_START + 18, D9)  -> S9);
FPR_ALIAS!(D10_ALIAS: (FPR_ID_START + 20, D10)  -> S10);
FPR_ALIAS!(D11_ALIAS: (FPR_ID_START + 22, D11)  -> S11);
FPR_ALIAS!(D12_ALIAS: (FPR_ID_START + 24, D12)  -> S12);
FPR_ALIAS!(D13_ALIAS: (FPR_ID_START + 26, D13)  -> S13);
FPR_ALIAS!(D14_ALIAS: (FPR_ID_START + 28, D14)  -> S14);
FPR_ALIAS!(D15_ALIAS: (FPR_ID_START + 30, D15)  -> S15);
FPR_ALIAS!(D16_ALIAS: (FPR_ID_START + 32, D16)  -> S16);
FPR_ALIAS!(D17_ALIAS: (FPR_ID_START + 34, D17)  -> S17);
FPR_ALIAS!(D18_ALIAS: (FPR_ID_START + 36, D18)  -> S18);
FPR_ALIAS!(D19_ALIAS: (FPR_ID_START + 38, D19)  -> S19);
FPR_ALIAS!(D20_ALIAS: (FPR_ID_START + 40, D20)  -> S20);
FPR_ALIAS!(D21_ALIAS: (FPR_ID_START + 42, D21)  -> S21);
FPR_ALIAS!(D22_ALIAS: (FPR_ID_START + 44, D22)  -> S22);
FPR_ALIAS!(D23_ALIAS: (FPR_ID_START + 46, D23)  -> S23);
FPR_ALIAS!(D24_ALIAS: (FPR_ID_START + 48, D24)  -> S24);
FPR_ALIAS!(D25_ALIAS: (FPR_ID_START + 50, D25)  -> S25);
FPR_ALIAS!(D26_ALIAS: (FPR_ID_START + 52, D26)  -> S26);
FPR_ALIAS!(D27_ALIAS: (FPR_ID_START + 54, D27)  -> S27);
FPR_ALIAS!(D28_ALIAS: (FPR_ID_START + 56, D28)  -> S28);
FPR_ALIAS!(D29_ALIAS: (FPR_ID_START + 58, D29)  -> S29);
FPR_ALIAS!(D30_ALIAS: (FPR_ID_START + 60, D30)  -> S30);
FPR_ALIAS!(D31_ALIAS: (FPR_ID_START + 62, D31)  -> S31);

lazy_static! {
    pub static ref FPR_ALIAS_TABLE : LinkedHashMap<MuID, Vec<P<Value>>> = {
        let mut ret = LinkedHashMap::new();

        ret.insert(D0.id(), D0_ALIAS.to_vec());
        ret.insert(D1.id(), D1_ALIAS.to_vec());
        ret.insert(D2.id(), D2_ALIAS.to_vec());
        ret.insert(D3.id(), D3_ALIAS.to_vec());
        ret.insert(D4.id(), D4_ALIAS.to_vec());
        ret.insert(D5.id(), D5_ALIAS.to_vec());
        ret.insert(D6.id(), D6_ALIAS.to_vec());
        ret.insert(D7.id(), D7_ALIAS.to_vec());
        ret.insert(D8.id(), D8_ALIAS.to_vec());
        ret.insert(D9.id(), D9_ALIAS.to_vec());
        ret.insert(D10.id(), D10_ALIAS.to_vec());
        ret.insert(D11.id(), D11_ALIAS.to_vec());
        ret.insert(D12.id(), D12_ALIAS.to_vec());
        ret.insert(D13.id(), D13_ALIAS.to_vec());
        ret.insert(D14.id(), D14_ALIAS.to_vec());
        ret.insert(D15.id(), D15_ALIAS.to_vec());
        ret.insert(D16.id(), D16_ALIAS.to_vec());
        ret.insert(D17.id(), D17_ALIAS.to_vec());
        ret.insert(D18.id(), D18_ALIAS.to_vec());
        ret.insert(D19.id(), D19_ALIAS.to_vec());
        ret.insert(D20.id(), D20_ALIAS.to_vec());
        ret.insert(D21.id(), D21_ALIAS.to_vec());
        ret.insert(D22.id(), D22_ALIAS.to_vec());
        ret.insert(D23.id(), D23_ALIAS.to_vec());
        ret.insert(D24.id(), D24_ALIAS.to_vec());
        ret.insert(D25.id(), D25_ALIAS.to_vec());
        ret.insert(D26.id(), D26_ALIAS.to_vec());
        ret.insert(D27.id(), D27_ALIAS.to_vec());
        ret.insert(D28.id(), D28_ALIAS.to_vec());
        ret.insert(D29.id(), D29_ALIAS.to_vec());
        ret.insert(D30.id(), D30_ALIAS.to_vec());
        ret.insert(D31.id(), D31_ALIAS.to_vec());

        ret
    };


    pub static ref FPR_ALIAS_LOOKUP : HashMap<MuID, P<Value>> = {
        let mut ret = HashMap::new();

        for vec in FPR_ALIAS_TABLE.values() {
            let colorable = vec[0].clone();

            for fpr in vec {
                ret.insert(fpr.id(), colorable.clone());
            }
        }

        ret
    };
}

lazy_static!{
qinsoon's avatar
qinsoon committed
493
494
    // Same as ARGUMENT_FPRS
    pub static ref RETURN_FPRS : [P<Value>; 8] = [
495
496
497
498
499
500
501
502
503
504
        D0.clone(),
        D1.clone(),
        D2.clone(),
        D3.clone(),
        D4.clone(),
        D5.clone(),
        D6.clone(),
        D7.clone()
    ];

qinsoon's avatar
qinsoon committed
505
    pub static ref ARGUMENT_FPRS : [P<Value>; 8] = [
506
507
508
509
510
511
512
513
514
515
        D0.clone(),
        D1.clone(),
        D2.clone(),
        D3.clone(),
        D4.clone(),
        D5.clone(),
        D6.clone(),
        D7.clone(),
    ];

qinsoon's avatar
qinsoon committed
516
    pub static ref CALLEE_SAVED_FPRS : [P<Value>; 8] = [
517
518
519
520
521
522
523
524
525
526
        D8.clone(),
        D9.clone(),
        D10.clone(),
        D11.clone(),
        D12.clone(),
        D13.clone(),
        D14.clone(),
        D15.clone()
    ];

qinsoon's avatar
qinsoon committed
527
    pub static ref CALLER_SAVED_FPRS : [P<Value>; 24] = [
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        D0.clone(),
        D1.clone(),
        D2.clone(),
        D3.clone(),
        D4.clone(),
        D5.clone(),
        D6.clone(),
        D7.clone(),

        D16.clone(),
        D17.clone(),
        D18.clone(),
        D19.clone(),
        D20.clone(),
        D21.clone(),
        D22.clone(),
        D23.clone(),
        D24.clone(),
        D25.clone(),
        D26.clone(),
        D27.clone(),
        D28.clone(),
        D29.clone(),
        D30.clone(),
        D31.clone()
    ];

qinsoon's avatar
qinsoon committed
555
    static ref ALL_FPRS : [P<Value>; 32] = [
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        D0.clone(),
        D1.clone(),
        D2.clone(),
        D3.clone(),
        D4.clone(),
        D5.clone(),
        D6.clone(),
        D7.clone(),

        D8.clone(),
        D9.clone(),
        D10.clone(),
        D11.clone(),
        D12.clone(),
        D13.clone(),
        D14.clone(),
        D15.clone(),

        D16.clone(),
        D17.clone(),
        D18.clone(),
        D19.clone(),
        D20.clone(),
        D21.clone(),
        D22.clone(),
        D23.clone(),
        D24.clone(),
        D25.clone(),
        D26.clone(),
        D27.clone(),
        D28.clone(),
        D29.clone(),
        D30.clone(),
        D31.clone()
    ];
}

lazy_static! {
qinsoon's avatar
qinsoon committed
594
    pub static ref ALL_MACHINE_REGS : LinkedHashMap<MuID, P<Value>> = {
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        let mut map = LinkedHashMap::new();

        for vec in GPR_ALIAS_TABLE.values() {
            for reg in vec {
                map.insert(reg.id(), reg.clone());
            }
        }

        for vec in FPR_ALIAS_TABLE.values() {
            for reg in vec {
                map.insert(reg.id(), reg.clone());
            }
        }

        map
    };

qinsoon's avatar
qinsoon committed
612
    pub static ref CALLEE_SAVED_REGS : [P<Value>; 18] = [
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        X19.clone(),
        X20.clone(),
        X21.clone(),
        X22.clone(),
        X23.clone(),
        X24.clone(),
        X25.clone(),
        X26.clone(),
        X27.clone(),
        X28.clone(),

        // Note: These two are technically CALLEE saved but need to be dealt with specially
        //X29.clone(), // Frame Pointer
        //X30.clone() // Link Register

        D8.clone(),
        D9.clone(),
        D10.clone(),
        D11.clone(),
        D12.clone(),
        D13.clone(),
        D14.clone(),
        D15.clone()
    ];


639
    // put caller saved regs first (they imposes no overhead if there is no call instruction)
qinsoon's avatar
qinsoon committed
640
    pub static ref ALL_USABLE_MACHINE_REGS : Vec<P<Value>> = vec![
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        X19.clone(),
        X20.clone(),
        X21.clone(),
        X22.clone(),
        X23.clone(),
        X24.clone(),
        X25.clone(),
        X26.clone(),
        X27.clone(),
        X28.clone(),
        //X29.clone(), // Frame Pointer
        //X30.clone(), // Link Register

        X0.clone(),
        X1.clone(),
        X2.clone(),
        X3.clone(),
        X4.clone(),
        X5.clone(),
        X6.clone(),
        X7.clone(),
        X8.clone(),
        X9.clone(),
        X10.clone(),
        X11.clone(),
        X12.clone(),
        X13.clone(),
        X14.clone(),
        X15.clone(),
        X16.clone(),
        X17.clone(),
        // X18.clone(), // Platform Register

        D8.clone(),
        D9.clone(),
        D10.clone(),
        D11.clone(),
        D12.clone(),
        D13.clone(),
        D14.clone(),
        D15.clone(),

        D0.clone(),
        D1.clone(),
        D2.clone(),
        D3.clone(),
        D4.clone(),
        D5.clone(),
        D6.clone(),
        D7.clone(),

        D16.clone(),
        D17.clone(),
        D18.clone(),
        D19.clone(),
        D20.clone(),
        D21.clone(),
        D22.clone(),
        D23.clone(),
        D24.clone(),
        D25.clone(),
        D26.clone(),
        D27.clone(),
        D28.clone(),
        D29.clone(),
        D30.clone(),
        D31.clone()
    ];
}

pub fn init_machine_regs_for_func (func_context: &mut FunctionContext) {
qinsoon's avatar
qinsoon committed
712
    for reg in ALL_MACHINE_REGS.values() {
713
714
715
716
717
718
719
720
721
        let reg_id = reg.extract_ssa_id().unwrap();
        let entry = SSAVarEntry::new(reg.clone());

        func_context.values.insert(reg_id, entry);
    }
}

pub fn number_of_regs_in_group(group: RegGroup) -> usize {
    match group {
qinsoon's avatar
qinsoon committed
722
723
        RegGroup::GPR => ALL_GPRS.len(),
        RegGroup::FPR => ALL_FPRS.len()
724
725
726
727
    }
}

pub fn number_of_all_regs() -> usize {
qinsoon's avatar
qinsoon committed
728
    ALL_MACHINE_REGS.len()
729
730
731
}

pub fn all_regs() -> &'static LinkedHashMap<MuID, P<Value>> {
qinsoon's avatar
qinsoon committed
732
    &ALL_MACHINE_REGS
733
734
735
}

pub fn all_usable_regs() -> &'static Vec<P<Value>> {
qinsoon's avatar
qinsoon committed
736
    &ALL_USABLE_MACHINE_REGS
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
}

pub fn pick_group_for_reg(reg_id: MuID) -> RegGroup {
    let reg = all_regs().get(&reg_id).unwrap();
    if reg.is_int_reg() {
        RegGroup::GPR
    } else if reg.is_fp_reg() {
        RegGroup::FPR
    } else {
        panic!("expect a machine reg to be either a GPR or a FPR: {}", reg)
    }
}

pub fn is_callee_saved(reg_id: MuID) -> bool {

qinsoon's avatar
qinsoon committed
752
    for reg in CALLEE_SAVED_GPRS.iter() {
753
754
        if reg_id == reg.extract_ssa_id().unwrap() {
            return true;
755
        }
756
757
    }

qinsoon's avatar
qinsoon committed
758
    for reg in CALLEE_SAVED_FPRS.iter() {
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
        if reg_id == reg.extract_ssa_id().unwrap() {
            return true;
        }
    }
    false
}

// TODO: Check that these numbers are reasonable (THEY ARE ONLY AN ESTIMATE)
use ast::inst::*;
pub fn estimate_insts_for_ir(inst: &Instruction) -> usize {
    use ast::inst::Instruction_::*;

    match inst.v {
        // simple
        BinOp(_, _, _)  => 1,
        BinOpWithStatus(_, _, _, _) => 2,
        CmpOp(_, _, _)  => 1,
        ConvOp{..}      => 1,

        // control flow
        Branch1(_)     => 1,
        Branch2{..}    => 1,
        Select{..}     => 2,
        Watchpoint{..} => 1,
        WPBranch{..}   => 2,
        Switch{..}     => 3,

        // call
        ExprCall{..} | ExprCCall{..} | Call{..} | CCall{..} => 5,
        Return(_)   => 1,
        TailCall(_) => 1,

        // memory access
        Load{..} | Store{..} => 1,
        CmpXchg{..}          => 1,
        AtomicRMW{..}        => 1,
        AllocA(_)            => 1,
        AllocAHybrid(_, _)   => 1,
        Fence(_)             => 1,

        // memory addressing
        GetIRef(_) | GetFieldIRef{..} | GetElementIRef{..} | ShiftIRef{..} | GetVarPartIRef{..} => 0,

        // runtime
        New(_) | NewHybrid(_, _) => 10,
        NewStack(_) | NewThread(_, _) | NewThreadExn(_, _) | NewFrameCursor(_) => 10,
        ThreadExit    => 10,
        Throw(_)      => 10,
        SwapStack{..} => 10,
        CommonInst_GetThreadLocal | CommonInst_SetThreadLocal(_) => 10,
        CommonInst_Pin(_) | CommonInst_Unpin(_) => 10,

        // others
        Move(_) => 0,
        PrintHex(_) => 10,
        ExnInstruction{ref inner, ..} => estimate_insts_for_ir(&inner)
    }
}


// Splits an integer immediate into four 16-bit segments (returns the least significant first)
820
pub fn split_aarch64_imm_u64(val: u64) -> (u16, u16, u16, u16) {
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    (val as u16, (val >> 16) as u16, (val >> 32) as u16, (val >> 48) as u16)
}

// Trys to reduce the given floating point to an immediate u64 that can be used with MOVI
pub fn f64_to_aarch64_u64(val: f64) -> Option<u64> {
    use std::mem;
    // WARNING: this assumes a little endian representation
    let bytes: [u8; 8] = unsafe { mem::transmute(val) };

    // Check that each byte is all 1 or all 0
    for i in 0..7 {
        if bytes[i] != 0b11111111 || bytes[i] != 0 {
            return None;
        }
    }

    Some(unsafe {mem::transmute::<f64, u64>(val)})
}

// Check that the given floating point fits in 8 bits
pub fn is_valid_f32_imm(val: f32) -> bool {
    use std::mem;

    // returns true if val has the format:
    //       aBbbbbbc defgh000 00000000 00000000 (where B = !b)
    //index: FEDCBA98 76543210 FEDCBA98 76543210
    //                       1                 0

    let uval = unsafe { mem::transmute::<f32, u32>(val) };

    let b = get_bit(uval as u64, 0x19);

    get_bit(uval as u64, 0x1E) == !b &&
        ((uval & (0b11111 << 0x19)) == if b {0b11111 << 0x19} else {0}) &&
        ((uval & !(0b1111111111111 << 0x13)) == 0)
}

// Reduces the given floating point constant to 8-bits (if it won't loose precision, otherwise returns 0)
pub fn is_valid_f64_imm(val: f64) -> bool {
    use std::mem;

    // returns true if val has the format:
    //       aBbbbbbb bbcdefgh 00000000 00000000 00000000 00000000 00000000 00000000 (where B = !b)
    //index: FEDCBA98 76543210 FEDCBA98 76543210 FEDCBA98 76543210 FEDCBA98 76543210
    //                       3                 2                 1                 0

    let uval = unsafe { mem::transmute::<f64, u64>(val) };

    let b = (uval & (1 << 0x36)) != 0;

    ((uval & (1 << 0x3E)) != 0) == !b &&
        ((uval & (0b11111111 << 0x36)) == if b {0b11111111 << 0x36} else {0}) &&
        ((uval & !(0b1111111111111111 << 0x30)) == 0)

}

// Returns the 'ith bit of x
#[inline(always)]
pub fn get_bit(x: u64, i: usize) -> bool {
    (x & ((1 as u64) << i) ) != 0
}

883
// Returns true if val = A << S, from some 0 <= A < 4096, and S = 0 or S = 12
884
pub fn is_valid_arithmetic_imm(val : u64) -> bool {
885
    val < 4096 || ((val & 0b111111111111) == 0 && val < (4096 << 12))
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
}

// aarch64 instructions only operate on 32 and 64-bit registers
// so a valid n bit logical immediate (where n < 32) can't be dirrectly used
// this function will replicate the bit pattern so that it can be used
// (the resulting value will be valid iff 'val' is valid, and the lower 'n' bits will equal val)
pub fn replicate_logical_imm(val : u64, n : usize) -> u64 {
    if n < 32 {
        let mut val = val;
        for i in 1..32/n {
            val |= val << i*n;
        }
        val
    } else {
        val
    }
}


// 'val' is a valid logical immediate if the binary value of ROR(val, r) matches the regular expresion
//      (0{k-x}1{x}){m/k}
//      for some r, k that divides N, 2 <= k <= n, and x with 0 < x < k
//      (note: 0 =< r < k);
pub fn is_valid_logical_imm(val : u64, n : usize) -> bool {
    // val should be an 'n' bit number
    debug_assert!(0 < n && n <= 64 && (n == 64 || (val < (1 << n))));
    debug_assert!(n.is_power_of_two());

    // all 0's and all 1's are invalid
    if val == 0 || val == bits_ones(n) {
        return false;
    }

    // find the rightmost '1' with '0' to the right
    let mut r = 0;
    while r < n {
        let current_bit = get_bit(val, r);
        let next_bit = get_bit(val, (r + n - 1) % n);
        if current_bit && !next_bit {
            break;
        }

        r += 1;
    }

    // rotate 'val' so that the MSB is a 0, and the LSB is a 1
    // (since there is a '0' to the right of val[start_index])
    let mut val = val.rotate_right(r as u32);

    // lower n bits ored with the upper n bits
    if n < 64 {
        val = (val & bits_ones(n)) | ((val & (bits_ones(n) << (64 - n))) >> (64 - n))
    }

    let mut x = 0; // number of '1's in a row
    while x < n {
        // found a '0' at position x, there must be x 1's to the right
        if !get_bit(val, x) {
            break;
        }
        x += 1;
    }

    let mut k = x + 1; // where the next '1' is
    while k < n {
        // found a '1'
        if get_bit(val, k) {
            break;
        }
        k += 1;
    }
    // Note: the above may not have found a 1, in which case k == n

    // note: k >= 2, since if k = 1, val = 1....1 (which we've already checked for)
    // check that k divides N
    if n % k != 0 {
        return false;
    }

    // Now we need to check that the pattern (0{k-x}1{x}) is repetead N/K times in val

    let k_mask = bits_ones(k);
    let val_0 = val & k_mask; // the first 'k' bits of val

    // for each N/k expected repitions of val_0 (except the first one_
971
972
    for i in 1..(n/k) {
        if val_0 != ((val >> (k*i)) & k_mask) {
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
            return false; // val_0 dosen't repeat
        }
    }

    return true;
}

// Returns the value of 'val' truncated to 'size', interpreted as an unsigned integer
pub fn get_unsigned_value(val: u64, size: usize) -> u64 {
    (val & bits_ones(size)) as u64 // clears all but the lowest 'size' bits of val
}

// Returns the value of 'val' truncated to 'size', interpreted as a signed integer
pub fn get_signed_value(val: u64, size: usize) -> i64 {
    if size == 64 {
        val as i64
    } else {
        let negative = (val & (1 << (size - 1))) != 0;

        if negative {
            (val | (bits_ones(64-size) << size)) as i64 // set the highest '64 - size' bits of val
        } else {
            (val & bits_ones(size)) as i64 // clears all but the lowest 'size' bits of val
        }
    }
}

fn invert_condition_code(cond: &str) -> &'static str {
    match cond {
        "EQ" => "NE",
        "NE" => "EQ",

        "CC" => "CS",
        "CS" => "CV",

        "HS" => "LO",
        "LO" => "HS",

        "MI" => "PL",
        "PL" => "MI",

        "VS" => "VN",
        "VN" => "VS",

        "HI" => "LS",
        "LS" => "HI",

        "GE" => "LT",
        "LT" => "GE",

        "GT" => "LE",
        "LE" => "GT",

        "AL" | "NV" => panic!("AL and NV don't have inverses"),
        _ => panic!("Unrecognised condition code")
    }
}

// Returns the aarch64 condition codes corresponding to the given comparison op
// (the comparisoon is true when the logical or of these conditions is true)
fn get_condition_codes(op: op::CmpOp) -> Vec<&'static str> {
    match op {
        op::CmpOp::EQ  | op::CmpOp::FOEQ => vec!["EQ"],
        op::CmpOp::NE  | op::CmpOp::FUNE => vec!["NE"],
        op::CmpOp::SGT | op::CmpOp::FOGT => vec!["GT"],
        op::CmpOp::SGE | op::CmpOp::FOGE => vec!["GE"],
        op::CmpOp::SLT | op::CmpOp::FULT => vec!["LT"],
        op::CmpOp::SLE | op::CmpOp::FULE => vec!["LE"],
        op::CmpOp::UGT | op::CmpOp::FUGT => vec!["HI"],
        op::CmpOp::UGE | op::CmpOp::FUGE => vec!["HS"],
        op::CmpOp::ULE | op::CmpOp::FOLE => vec!["LS"],
        op::CmpOp::ULT | op::CmpOp::FOLT => vec!["LO"],
1045
1046
1047
1048
        op::CmpOp::FUNO => vec!["VS"],
        op::CmpOp::FORD => vec!["VC"],
        op::CmpOp::FUEQ => vec!["EQ", "VS"],
        op::CmpOp::FONE => vec!["MI", "GT"],
1049
1050

        // These need to be handeled specially
1051
1052
        op::CmpOp::FFALSE => vec![],
        op::CmpOp::FTRUE  => vec![],
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    }
}

// if t is a homogenouse floating point aggregate
// (i.e. an array or struct where each element is the same floating-point type, and there are at most 4 elements)
// returns the number of elements, otherwise returns 0

fn hfa_length(t : P<MuType>) -> usize
{
    match t.v {
        MuType_::Struct(ref name) => {
            let read_lock = STRUCT_TAG_MAP.read().unwrap();
            let struc = read_lock.get(name).unwrap();
            let tys = struc.get_tys();
            if tys.len() < 1 || tys.len() > 4 {
                return 0;
            }

            let ref base = tys[0];
            match base.v {
                MuType_::Float | MuType_::Double => {
                    for i in 1..tys.len() - 1 {
                        if tys[i].v != base.v {
                            return 0;
                        }
                    }
                    return tys.len(); // All elements are the same type
                }
                _ => return 0,
            }


        }, // TODO: how do I extra the list of member-types from this??
        MuType_::Array(ref base, n) if n <= 4 => {
1087
1088
1089
            match base.v {
                MuType_::Float | MuType_::Double => n,
                _ => 0
1090
            }
1091
        }
1092
1093
1094
1095
1096
1097
1098
1099
1100
        _ => 0

    }
}

#[inline(always)]
// Returns the number that has 'n' 1's in a row (i.e. 2^n-1)
pub fn bits_ones(n: usize) -> u64 {
    if n == 64 { (-(1 as i64)) as u64 }
1101
        else { (1 << n) - 1 }
1102
1103
1104
1105
1106
1107
}
// val is an unsigned multiple of n and val/n fits in 12 bits
#[inline(always)]
pub fn is_valid_immediate_offset(val: i64, n : usize) -> bool {
    use std;
    let n =  std::cmp::max(n, 8);
Isaac Oscar Gariano's avatar
Isaac Oscar Gariano committed
1108
    (val >= -(1 << 8) && val < (1 << 8)) || // Valid 9 bit signed unscaled offset
1109
1110
        // Valid unsigned 12-bit scalled offset
        (val >= 0 && (val as u64) % (n as u64) == 0 && ((val as u64)/(n as u64) < (1 << 12)))
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
}

#[inline(always)]
// Can be used to load or store a pair
pub fn is_valid_immediate_pair_offset(val: i64, n : usize) -> bool {
    use std;
    let n =  std::cmp::max(n, 8);
    (val as u64) % (n as u64) == 0  && ((val as u64)/(n as u64) < (1 << 7))
}

#[inline(always)]
pub fn is_valid_immediate_scale(val: u64, n : usize) -> bool { val == (n as u64) || val == 1 }

#[inline(always)]
pub fn is_valid_immediate_extension(val: u64) -> bool { val <= 4 }

// Rounds n to the next multiple of d
#[inline(always)]
pub fn round_up(n: usize, d: usize) -> usize { ((n + d - 1)/d)*d }

#[inline(always)]
// Log2, assumes value is a power of two
// TODO: Implement this more efficiently?
pub fn log2(val: u64) -> u64 {
    debug_assert!(val.is_power_of_two());
1136
    debug_assert!(val != 0);
1137
1138
1139
1140
1141
    let mut ret = 0;
    for i in 0..63 {
        if val & (1 << i) != 0 {
            ret = i;
        }
1142
    }
1143
    // WARNING: This will only work for val < 2^31
1144
    //let ret = (val as f64).log2() as u64;
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
    debug_assert!(val == 1 << ret);
    ret
}

// Gets a primitive integer type with the given alignment
pub fn get_alignment_type(align: usize) -> P<MuType> {
    match align {
        1 => UINT8_TYPE.clone(),
        2 => UINT16_TYPE.clone(),
        4 => UINT32_TYPE.clone(),
        8 => UINT64_TYPE.clone(),
        16 => UINT128_TYPE.clone(),
        _ => panic!("aarch64 dosn't have types with alignment {}", align)
    }
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
}

#[inline(always)]
pub fn is_zero_register(val: &P<Value>) -> bool {
    is_zero_register_id(val.extract_ssa_id().unwrap())
}

#[inline(always)]
pub fn is_zero_register_id(id: MuID) -> bool {
    id == XZR.extract_ssa_id().unwrap() || id == WZR.extract_ssa_id().unwrap()
}

pub fn match_f32imm(op: &TreeNode) -> bool {
    match op.v {
        TreeNode_::Value(ref pv) => match pv.v {
            Value_::Constant(Constant::Float(_)) => true,
            _ => false
        },
        _ => false
    }
}

pub fn match_f64imm(op: &TreeNode) -> bool {
    match op.v {
        TreeNode_::Value(ref pv) => match pv.v {
            Value_::Constant(Constant::Double(_)) => true,
            _ => false
        },
        _ => false
    }
}

pub fn match_value_f64imm(op: &P<Value>) -> bool {
    match op.v {
        Value_::Constant(Constant::Double(_)) => true,
        _ => false
    }
}

pub fn match_value_f32imm(op: &P<Value>) -> bool {
    match op.v {
        Value_::Constant(Constant::Float(_)) => true,
        _ => false
    }
}

// The type of the node (for a value node)
pub fn node_type(op: &TreeNode) -> P<MuType> {
    match op.v {
        TreeNode_::Instruction(ref inst) => {
            if inst.value.is_some() {
                let ref value = inst.value.as_ref().unwrap();
                if value.len() != 1 {
                    panic!("the node {} does not have one result value", op);
                }

                value[0].ty.clone()
            } else {
                panic!("expected result from the node {}", op);
            }
        }
        TreeNode_::Value(ref pv) => pv.ty.clone(),
        _ => panic!("expected node value")
    }
}

pub fn match_value_imm(op: &P<Value>) -> bool {
    match op.v {
        Value_::Constant(_) => true,
        _ => false
    }
}

pub fn match_value_int_imm(op: &P<Value>) -> bool {
    match op.v {
        Value_::Constant(Constant::Int(_)) => true,
        _ => false
    }
}

pub fn match_node_int_imm(op: &TreeNode) -> bool {
    match op.v {
        TreeNode_::Value(ref pv) => match_value_int_imm(pv),
        _ => false
    }
}

pub fn match_node_imm(op: &TreeNode) -> bool {
    match op.v {
        TreeNode_::Value(ref pv) => match_value_imm(pv),
        _ => false
    }
}

pub fn node_imm_to_u64(op: &TreeNode) -> u64 {
    match op.v {
        TreeNode_::Value(ref pv) => value_imm_to_u64(pv),
        _ => panic!("expected imm")
    }
}

pub fn node_imm_to_f64(op: &TreeNode) -> f64 {
    match op.v {
        TreeNode_::Value(ref pv) => value_imm_to_f64(pv),
        _ => panic!("expected imm")
    }
}

pub fn node_imm_to_f32(op: &TreeNode) -> f32 {
    match op.v {
        TreeNode_::Value(ref pv) => value_imm_to_f32(pv),
        _ => panic!("expected imm")
    }
}

pub fn node_imm_to_value(op: &TreeNode) -> P<Value> {
    match op.v {
        TreeNode_::Value(ref pv) => {
            pv.clone()
        }
        _ => panic!("expected imm")
    }
}

pub fn value_imm_to_f32(op: &P<Value>) -> f32 {
    match op.v {
        Value_::Constant(Constant::Float(val)) => {
            val as f32
        },
        _ => panic!("expected imm float")
    }
}

pub fn value_imm_to_f64(op: &P<Value>) -> f64 {
    match op.v {
        Value_::Constant(Constant::Double(val)) => {
            val as f64
        },
        _ => panic!("expected imm double")
    }
}

pub fn value_imm_to_u64(op: &P<Value>) -> u64 {
    match op.v {
        Value_::Constant(Constant::Int(val)) =>
            get_unsigned_value(val as u64, op.ty.get_int_length().unwrap()),
        _ => panic!("expected imm int")
    }
}

pub fn value_imm_to_i64(op: &P<Value>) -> i64 {
    match op.v {
        Value_::Constant(Constant::Int(val)) =>
            get_signed_value(val as u64, op.ty.get_int_length().unwrap()),
        _ => panic!("expected imm int")
    }
}

pub fn make_value_int_const(val: u64, vm: &VM) -> P<Value> {
    P(Value {
        hdr: MuEntityHeader::unnamed(vm.next_id()),
        ty: UINT64_TYPE.clone(),
        v: Value_::Constant(Constant::Int(val))
    })
}

// Replaces the zero register with a temporary whose value is zero (or returns the orignal register)
/* TODO use this function for the following arguments:

We can probabbly allow the zero register to be the second argument to an _ext function (as the assembler will simply use the shifted-register encoding, which allows it)
add[,s1] // tirival
add_ext[d, s1]  // trivial
add_imm[d, s1] // trivial

adds[,s1 // not trivial (sets flags)
adds_ext[,s1]   // not trivial (sets flags)
adds_imm[, s2] // not trivial (sets flags)

sub_ext[d, s1]  // trivial
sub_imm[d, s1] // trivial

subs_ext[,s1]   // not trivial (sets flags)
subs_imm[, s2] // not trivial (sets flags)

and_imm[d] // trivial
eor_imm[d] // trivial
orr_imm[d] // trivial

cmn_ext[s1] // not trivial (sets flags)
cmn_imm[s1] // not trivial (sets flags)

cmp_ext[s1] // not trivial (sets flags)
cmp_imm[s1] // not trivial (sets flags)

(they are all (or did I miss some??) places that the SP can be used, which takes up the encoding of the ZR
I believe the Zero register can be used in all other places that an integer register is expected
(BUT AM NOT CERTAIN)
*/

/*
Just insert this immediatly before each emit_XX where XX is one the above instructions,
and arg is the name of the argument that can't be the zero register (do so for each such argument)
let arg = replace_zero_register(self.backend.as_mut(), &arg, f_context, vm);
*/

pub fn replace_zero_register(backend: &mut CodeGenerator, val: &P<Value>, f_context: &mut FunctionContext, vm: &VM) -> P<Value> {
    if is_zero_register(&val) {
        let temp = make_temporary(f_context, val.ty.clone(), vm);
        backend.emit_mov_imm(&temp, 0);
        temp
    } else {
        val.clone()
    }
}

pub fn make_temporary(f_context: &mut FunctionContext, ty: P<MuType>, vm: &VM) -> P<Value> {
    f_context.make_temporary(vm.next_id(), ty).clone_value()
}

pub fn emit_mov_u64(backend: &mut CodeGenerator, dest: &P<Value>, val: u64)
{
    let n = dest.ty.get_int_length().unwrap();
    // Can use one instruction
    if n <= 16 {
        backend.emit_movz(&dest, val as u16, 0);
    } else if val == 0 {
        backend.emit_movz(&dest, 0, 0);
    } else if val == (-1i64) as u64 {
        backend.emit_movn(&dest, 0, 0);
    } else if val > 0xFF && is_valid_logical_imm(val, n) {
        // Value is more than 16 bits
        backend.emit_mov_imm(&dest, replicate_logical_imm(val, n));

        // Have to use more than one instruciton
    } else {
        // Note n > 16, so there are at least two halfwords in n

        // How many halfowrds are zero or one
        let mut n_zeros = ((val & 0xFF == 0x00) as u64) + ((val & 0xFF00 == 0x0000) as u64);
        let mut n_ones = ((val & 0xFF == 0xFF) as u64) + ((val & 0xFF00 == 0xFF00) as u64);
        if n >= 32 {
            n_zeros += (val & 0xFF0000 == 0xFF0000) as u64;
            n_ones += (val & 0xFF0000 == 0xFF0000) as u64;
            if n >= 48 {
                n_zeros += (val & 0xFF000000 == 0xFF000000) as u64;
                n_ones += (val & 0xFF000000 == 0xFF000000) as u64;
            }
        }

        let (pv0, pv1, pv2, pv3) = split_aarch64_imm_u64(val);
        let mut movzn = false; // whether a movz/movn has been emmited yet

        if n_ones > n_zeros {
            // It will take less instructions to use MOVN
            // MOVN(dest, v, n) will set dest = !(v << n)

            if pv0 != 0xFF {
                backend.emit_movn(&dest, !pv0, 0);
                movzn = true;
            }
            if pv1 != 0xFF {
                if !movzn {
                    backend.emit_movn(&dest, !pv1, 16);
                    movzn = true;
                } else {
                    backend.emit_movk(&dest, pv1, 16);
                }
            }
            if n >= 32 && pv2 != 0xFF {
                if !movzn {
                    backend.emit_movn(&dest, !pv2, 32);
                    movzn = true;
                } else {
                    backend.emit_movk(&dest, pv2, 32);
                }
            }
            if n >= 48 && pv3 != 0xFF {
                if !movzn {
                    backend.emit_movn(&dest, pv3, 48);
                } else {
                    backend.emit_movk(&dest, pv3, 48);
                }
            }
        } else {
            // It will take less instructions to use MOVZ
            // MOVZ(dest, v, n) will set dest = (v << n)
            // MOVK(dest, v, n) will set dest = dest[64-0]:[n];
            if pv0 != 0 {
                backend.emit_movz(&dest, pv0, 0);
                movzn = true;
            }
            if pv1 != 0 {
                if !movzn {
                    backend.emit_movz(&dest, pv1, 16);
                    movzn = true;
                } else {
                    backend.emit_movk(&dest, pv1, 16);
                }
            }
            if n >= 32 && pv2 != 0 {
                if !movzn {
                    backend.emit_movz(&dest, pv2, 32);
                    movzn = true;
                } else {
                    backend.emit_movk(&dest, pv2, 32);
                }
            }
            if n >= 48 && pv3 != 0 {
                if !movzn {
                    backend.emit_movz(&dest, pv3, 48);
                } else {
                    backend.emit_movk(&dest, pv3, 48);
                }
            }
        }
    }
}

// TODO: Will this be correct if src is treated as signed (i think so...)
pub fn emit_mul_u64(backend: &mut CodeGenerator, dest: &P<Value>, src: &P<Value>, f_context: &mut FunctionContext, vm: &VM, val: u64)
{
    if val == 0 {
        // dest = 0
        backend.emit_mov_imm(&dest, 0);
    } else if val == 1 {
        // dest = src
        if dest.id() != src.id() {
            backend.emit_mov(&dest, &src);
        }
    } else if val.is_power_of_two() {
        // dest = src << log2(val)
        backend.emit_lsl_imm(&dest, &src, log2(val as u64) as u8);
    } else {
        // dest = src * val
        let temp_mul = make_temporary(f_context, src.ty.clone(), vm);
        emit_mov_u64(backend, &temp_mul, val as u64);
        backend.emit_mul(&dest, &src, &temp_mul);
    }
}

// TODO: Deal with memory case
pub fn emit_ireg_value(backend: &mut CodeGenerator, pv: &P<Value>, f_context: &mut FunctionContext, vm: &VM) -> P<Value> {
    match pv.v {
        Value_::SSAVar(_) => pv.clone(),
        Value_::Constant(ref c) => {
            match c {
                &Constant::Int(val) => {
                    // TODO Deal with zero case
                    /*if val == 0 {
                        // TODO: Are there any (integer) instructions that can't use the Zero register?
                        // Use the zero register (saves having to use a temporary)
                        get_alias_for_length(XZR.id(), get_bit_size(&pv.ty, vm))
                    } else {*/
                    let tmp = make_temporary(f_context, pv.ty.clone(), vm);
                    debug!("tmp's ty: {}", tmp.ty);
                    emit_mov_u64(backend, &tmp, val);
                    tmp
                    //}
                },
                &Constant::FuncRef(_) => {
                    unimplemented!();
                },
                &Constant::NullRef => {
                    let tmp = make_temporary(f_context, pv.ty.clone(), vm);
                    backend.emit_mov_imm(&tmp, 0);
                    tmp
                    //get_alias_for_length(XZR.id(), get_bit_size(&pv.ty, vm))
                },
                _ => panic!("expected ireg")
            }
        },
        _ => panic!("expected ireg")
    }
}

pub fn emit_mem(backend: &mut CodeGenerator, pv: &P<Value>, f_context: &mut FunctionContext, vm: &VM) -> P<Value> {
    let n = vm.get_backend_type_info(pv.ty.id()).alignment;
    match pv.v {
        Value_::Memory(ref mem) => {
            match mem {
                &MemoryLocation::VirtualAddress{ref base, ref offset, scale, signed} => {
                    let mut shift = 0 as u8;
                    let offset =
                        if offset.is_some() {
                            let offset = offset.as_ref().unwrap();
                            if match_value_int_imm(offset) {
                                let mut offset_val = value_imm_to_i64(offset);
                                offset_val *= scale as i64;
                                if is_valid_immediate_offset(offset_val, n) {
                                    Some(make_value_int_const(offset_val as u64, vm))
                                } else {
                                    let offset = make_temporary(f_context, UINT64_TYPE.clone(), vm);
                                    emit_mov_u64(backend, &offset, offset_val as u64);
                                    Some(offset)
                                }
                            } else {
                                let offset = emit_ireg_value(backend, offset, f_context, vm);

                                // TODO: If scale == n*m (for some m), set shift = n, and multiply index by m
                                if !is_valid_immediate_scale(scale, n) {
                                    let temp = make_temporary(f_context, offset.ty.clone(), vm);

                                    emit_mul_u64(backend, &temp, &offset, f_context, vm, scale);
                                    Some(temp)
                                } else {
                                    shift = log2(scale) as u8;
                                    Some(offset)
                                }
                            }
                        }
                            else {
                                None
                            };

                    P(Value {
                        hdr: MuEntityHeader::unnamed(vm.next_id()),
                        ty: pv.ty.clone(),
                        v: Value_::Memory(MemoryLocation::Address {
                            base: base.clone(),
                            offset: offset,
                            shift: shift,
                            signed: signed
                        })
                    })
                }
                &MemoryLocation::Symbolic{ref label, is_global} => {
                    if is_global {
                        let temp = make_temporary(f_context, pv.ty.clone(), vm);
                        emit_addr_sym(backend, &temp, &pv, vm);

                        P(Value {
                            hdr: MuEntityHeader::unnamed(vm.next_id()),
                            ty: pv.ty.clone(),
                            v: Value_::Memory(MemoryLocation::Address {
                                base: temp,
                                offset: None,
                                shift: 0,
                                signed: false,
                            })
                        })
                    } else {
                        pv.clone()
                    }
                }
                _ => pv.clone()
            }
        }
        _ => panic!("expected memory")
    }
}

// Sets 'dest' to the absolute address of the given global symbolic memory location
//WARNING: this assumes that the resulting assembly file is compiled with -fPIC
pub fn emit_addr_sym(backend: &mut CodeGenerator, dest: &P<Value>, src: &P<Value>, vm: &VM) {
    match src.v {
        Value_::Memory(ref mem) => {
            match mem {
                &MemoryLocation::Symbolic{ref label, is_global} => {
                    if is_global {
                        // Set dest to be the page address of the entry for src in the GOT
                        backend.emit_adrp(&dest, &src);

                        // Note: The offset should always be a valid immediate offset as it is 12-bits
                        // (The same size as an immediate offset)
                        let offset = P(Value {
                            hdr: MuEntityHeader::unnamed(vm.next_id()),
                            ty: UINT64_TYPE.clone(),
                            v: Value_::Constant(Constant::ExternSym(format!(":got_lo12:{}", label)))
                        });

                        // [dest + low 12 bits of the GOT entry for src]
                        let address_loc = P(Value {
                            hdr: MuEntityHeader::unnamed(vm.next_id()),
                            ty: ADDRESS_TYPE.clone(),
                            // should be ptr<src.ty>

                            v: Value_::Memory(MemoryLocation::Address {
                                base: dest.clone(),
                                offset: Some(offset),
                                shift: 0,
                                signed: false,
                            })
                        });

                        // Load dest with the value in the GOT entry for src
                        backend.emit_ldr(&dest, &address_loc, false);
                    } else {
                        // Load 'dest' with the value of PC + the PC-offset of src
                        backend.emit_adr(&dest, &src);
                    }
                }
                _ => panic!("Expected symbolic memory location")
            }
        }
        _ => panic!("Expected memory value")
    }
}
pub fn cast_value(val: &P<Value>, t: &P<MuType>) -> P<Value> {
    let to_size = check_op_len(&val.ty);
    let from_size = check_op_len(&t);
    if to_size == from_size {
        val.clone() // No need to cast
    } else {
        if is_machine_reg(val) {
            if from_size < to_size { // 64 bits to 32 bits
                get_register_from_id(val.id() + 1)
            } else { // 32 bits to 64 bits
                get_register_from_id(val.id() - 1)
            }
        } else {
            unsafe { val.as_type(t.clone()) }
        }
    }
}