WARNING! Access to this system is limited to authorised users only.
Unauthorised users may be subject to prosecution.
Unauthorised access to this system is a criminal offence under Australian law (Federal Crimes Act 1914 Part VIA)
It is a criminal offence to:
(1) Obtain access to data without authority. -Penalty 2 years imprisonment.
(2) Damage, delete, alter or insert data without authority. -Penalty 10 years imprisonment.
User activity is monitored and recorded. Anyone using this system expressly consents to such monitoring and recording.

To protect your data, the CISO officer has suggested users to enable 2FA as soon as possible.
Currently 2.7% of users enabled 2FA.

Commit 0d36d6ca authored by John Zhang's avatar John Zhang
Browse files

richer and more colourful output

parent 606b9453
...@@ -6,6 +6,7 @@ from tempfile import mkdtemp ...@@ -6,6 +6,7 @@ from tempfile import mkdtemp
import py, os, sys import py, os, sys
import subprocess as subp import subprocess as subp
import ctypes import ctypes
import math
from rpython.translator.interactive import Translation from rpython.translator.interactive import Translation
from rpython.config.translationoption import set_opt_level from rpython.config.translationoption import set_opt_level
...@@ -83,22 +84,31 @@ def perf_fibonacci(): ...@@ -83,22 +84,31 @@ def perf_fibonacci():
backend='mu', muimpl='fast', mucodegen='api', mutestjit=True) backend='mu', muimpl='fast', mucodegen='api', mutestjit=True)
set_opt_level(t.config, '3') set_opt_level(t.config, '3')
db, bdlgen, fnc_name = t.compile_mu() db, bdlgen, fnc_name = t.compile_mu()
libname = 'lib%(fnc_name)s.dylib' % locals() libpath = tmpdir.join('lib%(fnc_name)s.dylib' % locals())
bdlgen.mu.compile_to_sharedlib(libname, []) bdlgen.mu.compile_to_sharedlib(libpath.strpath, [])
libpath = py.path.local().join('emit', libname)
fnp = getattr(ctypes.CDLL(libpath.strpath), fnc_name) fnp = getattr(ctypes.CDLL(libpath.strpath), fnc_name)
return fnp return fnp
def get_average_time(run_fnc, args, warmup=5, iterations=100): def get_stat(run_fnc, args, warmup=5, iterations=100):
for i in range(warmup): for i in range(warmup):
run_fnc(*args) run_fnc(*args)
total = 0.0 times = []
for i in range(iterations): for i in range(iterations):
total += run_fnc(*args) times.append(run_fnc(*args))
return total / iterations
def get_average_time_compiled(compile_fnc, args, warmup=5, iterations=100): times.sort()
avg = sum(times) / float(len(times))
t_min = t_max = t_std = None
if len(times) > 1:
t_min = times[0]
t_max = times[-1]
squares = ((t - avg) ** 2 for t in times)
t_std = math.sqrt(sum(squares) / (len(times) - 1))
return {'average': avg, 't_min': t_min, 't_max': t_max, 'std_dev': t_std}
def get_stat_compiled(compile_fnc, args, warmup=5, iterations=100):
def run_funcptr(fnp, N): def run_funcptr(fnp, N):
t0 = time() t0 = time()
fnp(N) fnp(N)
...@@ -106,26 +116,33 @@ def perf_fibonacci(): ...@@ -106,26 +116,33 @@ def perf_fibonacci():
return t1 - t0 return t1 - t0
fnp = compile_fnc() fnp = compile_fnc()
return get_average_time(lambda *a: run_funcptr(fnp, *a), args, warmup, iterations) return get_stat(lambda *a: run_funcptr(fnp, *a), args, warmup, iterations)
def get_display_str(stat):
output = "average: %(average)s\n" \
"min: %(t_min)s\n" \
"max: %(t_max)s\n" \
"std_dev: %(std_dev)s\n"
return output % stat
N = 30 N = 30
warmup = 0 warmup = 0
iterations = 1 iterations = 10
t_cpython = get_average_time(run_cpython, [N], warmup, iterations=iterations) results = {
t_pypy_nojit = get_average_time(run_pypy_nojit, [N], warmup, iterations=iterations) 'cpython': get_stat(run_cpython, [N], warmup, iterations=iterations),
t_pypy = get_average_time(run_pypy, [N], warmup, iterations=iterations) 'pypy_nojit': get_stat(run_pypy_nojit, [N], warmup, iterations=iterations),
t_rpyc = get_average_time_compiled(compile_rpython_c, [N], warmup, iterations=iterations) 'pypy': get_stat(run_pypy, [N], warmup, iterations=iterations),
t_rpyc_jit = get_average_time_compiled(compile_rpython_c_jit, [N], warmup, iterations=iterations) 'rpy_c': get_stat_compiled(compile_rpython_c, [N], warmup, iterations=iterations),
t_rpyc_mu = get_average_time_compiled(compile_rpython_mu, [N], warmup, iterations=iterations) 'rpy_c_jit': get_stat_compiled(compile_rpython_c_jit, [N], warmup, iterations=iterations),
t_c = get_average_time_compiled(compile_c, [N], warmup, iterations=iterations) 'rpy_mu': get_stat_compiled(compile_rpython_mu, [N], warmup, iterations=iterations),
print "CPython:", t_cpython 'c': get_stat_compiled(compile_c, [N], warmup, iterations=iterations),
print "PyPy (no JIT):", t_pypy_nojit }
print "PyPy:", t_pypy
print "RPython C:", t_rpyc for python, result in results.items():
print "RPython C (with JIT):", t_rpyc_jit print '\033[35m---- %(python)s ----\033[0m' % locals()
print "RPython Mu Zebu:", t_rpyc_mu print get_display_str(result)
print "C:", t_c
if __name__ == '__main__': if __name__ == '__main__':
perf_fibonacci() perf_fibonacci()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment