WARNING! Access to this system is limited to authorised users only.
Unauthorised users may be subject to prosecution.
Unauthorised access to this system is a criminal offence under Australian law (Federal Crimes Act 1914 Part VIA)
It is a criminal offence to:
(1) Obtain access to data without authority. -Penalty 2 years imprisonment.
(2) Damage, delete, alter or insert data without authority. -Penalty 10 years imprisonment.
User activity is monitored and recorded. Anyone using this system expressly consents to such monitoring and recording.

To protect your data, the CISO officer has suggested users to enable 2FA as soon as possible.
Currently 2.2% of users enabled 2FA.

Commit f50bc3ee authored by John Zhang's avatar John Zhang
Browse files

plotting

parent 8aa0b809
......@@ -111,7 +111,7 @@ def get_stat(run_fnc, config, iterations=100):
squares = ((t - avg) ** 2 for t in times)
t_std = math.sqrt(sum(squares) / (len(times) - 1))
return {'average': avg, 't_min': t_min, 't_max': t_max, 'std_dev': t_std}
return {'average': avg, 't_min': t_min, 't_max': t_max, 'std_dev': t_std, 'data': times}
def get_stat_compiled(compile_fnc, config, iterations=100):
......@@ -141,7 +141,7 @@ def perf(config, iterations):
'pypy_nojit': get_stat(run_pypy_nojit, config, iterations=iterations),
'pypy': get_stat(run_pypy, config, iterations=iterations),
'rpy_c': get_stat_compiled(compile_rpython_c, config, iterations=iterations),
'rpy_c_jit': get_stat_compiled(compile_rpython_c_jit, config, iterations=iterations),
# 'rpy_c_jit': get_stat_compiled(compile_rpython_c_jit, config, iterations=iterations),
'rpy_mu': get_stat_compiled(compile_rpython_mu, config, iterations=iterations),
'c': get_stat_compiled(compile_c, config, iterations=iterations),
}
......@@ -181,7 +181,6 @@ def perf_fibonacci(N, iterations):
}
results = perf(config, iterations)
results['problem_size'] = N
return results
......@@ -205,7 +204,6 @@ def perf_arraysum(N, iterations):
}
results = perf(config, iterations)
results['problem_size'] = N
return results
......@@ -229,7 +227,6 @@ def perf_quicksort(N, iterations):
}
results = perf(config, iterations)
results['problem_size'] = N
return results
......@@ -245,6 +242,38 @@ def test_functional_quicksort():
save_results('quicksort', perf_quicksort(100, 1))
def plot(perf_fnc, N, iteration=5):
results = perf_fnc(N, iteration)
import matplotlib.pyplot as plt
fig = plt.figure(1, figsize=(9, 6))
ax = fig.add_subplot(111)
width = 0.1
colors = ['#c82829',
'#f5871f',
'#eab700',
'#718c00',
'#3e999f',
'#4271ae',
'#8959a8',
'#1d1f21']
data = [(tgt, results[tgt]['average'], results[tgt]['std_dev']) for tgt in results]
data.sort(key=lambda (tgt, avg, std): avg)
for i, (tgt, avg, std_dev) in enumerate(data):
ax.bar(width / 2 + width * i, avg, width, color=colors[i], yerr=std_dev, label=tgt)
ax.text(width / 2 + width * i + 0.01, avg, "%.6f" % avg, color='#1d1f21', fontweight='bold')
plt.legend(loc=2)
plt.title("%s with input size %d" % (perf_fnc.__name__, N))
plt.show()
def test_plot():
plot(perf_quicksort, 100000)
if __name__ == '__main__':
save_results('fibonacci', perf_fibonacci(40, 20))
save_results('arraysum', perf_arraysum(1000000, 20))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment